Lsmooth #
Main results #
This file mainly concentrates on the properties of the L smooth function.
The main theorem is given as:
We prove the second order upper bound theorem, i.e.
Let f be a Lipschitz smooth function defined on a convex set s. f is l-Lipschitz smooth on s.
f(y) ≤ f(x) + ∇ f(x)^T (y-x) + 1 / 2 * ‖y - x‖ ^ 2 ∀ x, y ∈ s.
We prove the properties of a convex l-Lipschitz smooth function
Let f be a differentiable convex function defined on ℝ^n, then the following statement is equivalent
(a) f is l - Lipschitz smooth on ℝ^n.
(b) g(x) = 1 / 2 * ‖x‖ ^ 2 - f(x) is convex .
(c) (∇ f(x) - ∇ f(y)) ^ T(x- y) ≥ 1 / l * ‖∇ f(x) - ∇ f(y)‖ ^ 2 ∀ x, y ∈ ℝ^n.
Some relative lemmas are also contained
theorem
lipschitz_continuous_upper_bound
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{f' : E → E →L[ℝ] ℝ}
{l : NNReal}
(h₁ : ∀ (x₁ : E), HasFDerivAt f (f' x₁) x₁)
(h₂ : LipschitzWith l f')
(x : E)
(y : E)
:
theorem
lipschitz_continuos_upper_bound'
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
{f : E → ℝ}
{f' : E → E}
{l : NNReal}
(h₁ : ∀ (x₁ : E), HasGradientAt f (f' x₁) x₁)
(h₂ : LipschitzWith l f')
(x : E)
(y : E)
:
theorem
lipschitz_minima_lower_bound
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
{f : E → ℝ}
{f' : E → E}
{xm : E}
{l : NNReal}
(h₁ : ∀ (x : E), HasGradientAt f (f' x) x)
(h₂ : LipschitzWith l f')
(min : IsMinOn f Set.univ xm)
(hl : l > 0)
(x : E)
:
theorem
lipschitz_to_lnorm_sub_convex
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
{f : E → ℝ}
{f' : E → E}
{s : Set E}
{l : NNReal}
(hs : Convex ℝ s)
(h₁ : ∀ x ∈ s, HasGradientAt f (f' x) x)
(h₂ : LipschitzOnWith l f' s)
(hl : l > 0)
:
theorem
convex_to_lower
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
{f : E → ℝ}
{f' : E → E}
{l : ℝ}
(h₁ : ∀ (x : E), HasGradientAt f (f' x) x)
(h₂ : ConvexOn ℝ Set.univ fun (x : E) => l / 2 * ‖x‖ ^ 2 - f x)
(lp : l > 0)
(hfun : ConvexOn ℝ Set.univ f)
(x : E)
(y : E)
:
theorem
lipschitz_to_lower
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
{f : E → ℝ}
{f' : E → E}
{l : NNReal}
(h₁ : ∀ (x : E), HasGradientAt f (f' x) x)
(h₂ : LipschitzWith l f')
(hfun : ConvexOn ℝ Set.univ f)
(hl : l > 0)
(x : E)
(y : E)
:
theorem
lower_to_lipschitz
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
{f' : E → E}
{l : NNReal}
(h₂ : ∀ (x y : E), ⟪f' x - f' y, x - y⟫_ℝ ≥ 1 / ↑l * ‖f' x - f' y‖ ^ 2)
(hl : l > 0)
:
LipschitzWith l f'
theorem
lower_iff_lipschitz
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
{f : E → ℝ}
{f' : E → E}
{l : NNReal}
(h₁ : ∀ (x : E), HasGradientAt f (f' x) x)
(hfun : ConvexOn ℝ Set.univ f)
(hl : l > 0)
:
theorem
lipshictz_iff_lnorm_sub_convex
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
{f : E → ℝ}
{f' : E → E}
{l : NNReal}
(h₁ : ∀ (x : E), HasGradientAt f (f' x) x)
(hfun : ConvexOn ℝ Set.univ f)
(hl : l > 0)
:
theorem
lower_iff_lnorm_sub_convex
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
{f : E → ℝ}
{f' : E → E}
{l : NNReal}
(h₁ : ∀ (x : E), HasGradientAt f (f' x) x)
(hfun : ConvexOn ℝ Set.univ f)
(hl : l > 0)
: