Lemmas #
Main results #
This file contains the following parts of basic properties of continuous and differentiable lemmas
- the equivalent definition of continuous functions
- the equivalent definition of fderiv and gradient
- the deriv of composed function on a segment
- the gradient of special functions with inner product and norm
- the taylor expansion of a differentiable function locally
- the langrange interpolation of a differentiable function
theorem
Convergence_ContinuousAt
{E : Type u_1}
[NormedAddCommGroup E]
{f : E → ℝ}
{x : E}
(h : ∀ ε > 0, ∃ δ > 0, ∀ (x' : E), ‖x - x'‖ ≤ δ → ‖f x' - f x‖ ≤ ε)
:
ContinuousAt f x
theorem
deriv_function_comp_segment
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{f' : E → E →L[ℝ] ℝ}
(x : E)
(y : E)
(h₁ : ∀ (x₁ : E), HasFDerivAt f (f' x₁) x₁)
(t₀ : ℝ)
:
theorem
Convergence_HasGradient
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
{x : E}
{f : E → ℝ}
{f' : E → E}
(h : ∀ ε > 0, ∃ δ > 0, ∀ (x' : E), ‖x - x'‖ ≤ δ → ‖f x' - f x - ⟪f' x, x' - x⟫_ℝ‖ ≤ ε * ‖x - x'‖)
:
HasGradientAt f (f' x) x
theorem
HasGradient_iff_Convergence_Point
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
{x : E}
{f : E → ℝ}
{f'x : E}
:
theorem
HasGradient_iff_Convergence
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
{x : E}
{f : E → ℝ}
{f' : E → E}
:
theorem
gradient_norm_sq_eq_two_self
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
(x : E)
:
HasGradientAt (fun (x : E) => ‖x‖ ^ 2) (2 • x) x
theorem
gradient_of_inner_const
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
(x : E)
(a : E)
:
HasGradientAt (fun (x : E) => ⟪a, x⟫_ℝ) a x
theorem
gradient_of_const_mul_norm
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
(l : ℝ)
(z : E)
:
theorem
gradient_of_sq
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
{x : E}
(u : E)
:
theorem
sub_normsquare_gradient
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
{f : E → ℝ}
{f' : E → E}
{s : Set E}
(hf : ∀ x ∈ s, HasGradientAt f (f' x) x)
(m : ℝ)
(x : E)
:
theorem
gradient_continuous_of_contdiff
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
{x : E}
{ε : ℝ}
(f : E → ℝ)
(he : ε > 0)
(hf : ContDiffOn ℝ 1 f (Metric.ball x ε))
:
ContinuousAt (fun (x : E) => gradient f x) x
theorem
expansion
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
{f : E → ℝ}
{f' : E → E}
(hf : ∀ (x : E), HasGradientAt f (f' x) x)
(x : E)
(p : E)
:
theorem
general_expansion
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
{f : E → ℝ}
{f' : E → E}
(x : E)
(p : E)
(hf : ∀ y ∈ Metric.closedBall x ‖p‖, HasGradientAt f (f' y) y)
: