Documentation

Convex.Analysis.GradientDiv

Gradient.division #

Main results #

This file contains the division parts of gradient, which can't be found in fderiv.

As the functions discussed in this file are restricted to E → ℝ

Two main theorems are formalized in this file

theorem Vert_abs (a : ) (b : ) :
|a| - |b| a - b
theorem Vert_div (a : ) (b : ) :
theorem Simplifying₁ (a : ) (b : ) (h₁ : a 0) (h₂ : b 0) (h₃ : b / 2 a) :
1 / (b * b * a) 2 / (b * b * b)
theorem Simplifying₂ (a : ) (b : ) (c : ) (d : ) (h₁ : a 0) (h₂ : 0 c) :
2 / (a * a * a) * b * (c + 1) * (d * a * a * a / (4 * (c + 1))) = d / 2 * b
theorem div_div_mul (a : ) (b : ) (c : ) (h₁ : a / b c) (h₂ : 0 < a) (h₃ : 0 < b) (h₄ : 0 < c) :
1 / c b / a
theorem HasGradientAt.one_div {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [CompleteSpace E] {f : E} {x : E} {grad : E} (hf : HasGradientAt f grad x) (h₁ : ¬f x = 0) :
HasGradientAt (fun (y : E) => 1 / f y) (-(1 / f x ^ 2) grad) x