Documentation

Convex.Function.MinimaClosedFunction

the Weierstrass theorem

Generalized Weierstrass theorem #

theorem IsMinOn.of_isCompact_preimage {E : Type u_1} {F : Type u_2} [CompleteLinearOrder F] [DenselyOrdered F] {f : EF} [TopologicalSpace E] [TopologicalSpace F] [OrderTopology F] [FirstCountableTopology E] [FirstCountableTopology F] (hf : LowerSemicontinuous f) {y : F} (h1 : (f ⁻¹' Set.Iic y).Nonempty) (h2 : IsCompact (f ⁻¹' Set.Iic y)) :
∃ (x : E), IsMinOn f Set.univ x

Existence of Solutions #

def strong_quasi {E : Type u_1} {F : Type u_2} [AddCommMonoid E] [CompleteLinearOrder F] {f : EF} {𝕜 : Type u_3} [LinearOrderedRing 𝕜] [Module 𝕜 E] :
Equations
  • strong_quasi = ∀ ⦃x y : E⦄, x y∀ ⦃a b : 𝕜⦄, 0 < a0 < ba + b = 1f (a x + b y) < max (f x) (f y)
Instances For
    theorem isMinOn_unique {E : Type u_1} {F : Type u_2} [AddCommMonoid E] [CompleteLinearOrder F] {f : EF} {𝕜 : Type u_3} [LinearOrderedRing 𝕜] [DenselyOrdered 𝕜] [Module 𝕜 E] (hf' : strong_quasi) {x : E} {y : E} (hx : IsMinOn f Set.univ x) (hy : IsMinOn f Set.univ y) :
    x = y