the Weierstrass theorem
Generalized Weierstrass theorem #
theorem
IsMinOn.of_isCompact_preimage
{E : Type u_1}
{F : Type u_2}
[CompleteLinearOrder F]
[DenselyOrdered F]
{f : E → F}
[TopologicalSpace E]
[TopologicalSpace F]
[OrderTopology F]
[FirstCountableTopology E]
[FirstCountableTopology F]
(hf : LowerSemicontinuous f)
{y : F}
(h1 : (f ⁻¹' Set.Iic y).Nonempty)
(h2 : IsCompact (f ⁻¹' Set.Iic y))
:
∃ (x : E), IsMinOn f Set.univ x
theorem
IsCompact_isMinOn_of_isCompact_preimage
{E : Type u_1}
{F : Type u_2}
[CompleteLinearOrder F]
[DenselyOrdered F]
{f : E → F}
[TopologicalSpace E]
[TopologicalSpace F]
[OrderTopology F]
[FirstCountableTopology E]
[FirstCountableTopology F]
(hf : LowerSemicontinuous f)
{y : F}
(h1 : (f ⁻¹' Set.Iic y).Nonempty)
(h2 : IsCompact (f ⁻¹' Set.Iic y))
:
Existence of Solutions #
theorem
isMinOn_unique
{E : Type u_1}
{F : Type u_2}
[AddCommMonoid E]
[CompleteLinearOrder F]
{f : E → F}
{𝕜 : Type u_3}
[LinearOrderedRing 𝕜]
[DenselyOrdered 𝕜]
[Module 𝕜 E]
(hf' : strong_quasi)
{x : E}
{y : E}
(hx : IsMinOn f Set.univ x)
(hy : IsMinOn f Set.univ y)
:
x = y