def
Banach_HasSubgradientAt
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
(f : E → ℝ)
(g : E →L[ℝ] ℝ)
(x : E)
:
Subgradient of functions -
Equations
- Banach_HasSubgradientAt f g x = ∀ (y : E), f y ≥ f x + g (y - x)
Instances For
def
Banach_HasSubgradientWithinAt
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
(f : E → ℝ)
(g : E →L[ℝ] ℝ)
(s : Set E)
(x : E)
:
Equations
- Banach_HasSubgradientWithinAt f g s x = ∀ y ∈ s, f y ≥ f x + g (y - x)
Instances For
def
Banach_SubderivAt
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
(f : E → ℝ)
(x : E)
:
Subderiv of functions -
Equations
- Banach_SubderivAt f x = {g : E →L[ℝ] ℝ | Banach_HasSubgradientAt f g x}
Instances For
def
Banach_SubderivWithinAt
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
(f : E → ℝ)
(s : Set E)
(x : E)
:
Equations
- Banach_SubderivWithinAt f s x = {g : E →L[ℝ] ℝ | Banach_HasSubgradientWithinAt f g s x}
Instances For
theorem
Banach_SubderivWithinAt.Nonempty
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
{s : Set E}
(hf : ConvexOn ℝ s f)
(hc : ContinuousOn f (interior s))
(hx : x ∈ interior s)
:
(Banach_SubderivWithinAt f s x).Nonempty